Optical Metamaterials : Design
نویسندگان
چکیده
Artificially engineered metamaterials have emerged with properties and functionalities previously unattainable in natural materials. The scientific breakthroughs made in this new class of electromagnetic materials are closely linked with progress in developing physics-driven design, novel fabrication and characterization methods. The intricate behavior of these novel metamaterials is interesting from both fundamental and practical point of view. New frontiers are being explored as intrinsic limitations challenge the scaling of microwave metamaterial designs to optical frequencies. These materials promise an entire new generation of miniaturized passive and active optical elements. In this study, I demonstrate an on-fiber integrated " fishnet " metamaterial modulator for telecommunication applications. This metamaterial shows remarkable coupling to fiber guided modes (3.5dB) and a photoswitchable tuning range of more than 1.8dB. The design offers extremely small footprint (~10 wavelengths) and complete elimination of bulk optical components to realize low-cost, potential high-speed optical switching and modulation. Unique characterization techniques need to be developed as conventional optical microscopy runs out of steam to resolve the fine features of optical metamaterials. To address this challenge, I have investigated cathodoluminescence imaging and spectroscopy technique. This scanning electron beam based technique allows optical image acquisition and spectroscopy with high spectral and spatial resolution. Monochromatic photon maps (spectral bandwidth ~5nm) show strong variation of localized plasmon modes on length scales as small as 25nm. Numerical simulations performed to model the eigenmodes excited by electron beam show strong agreement with experiments. I also demonstrate progress made in " superlensing " , a phenomenon associated with plasmonic metamaterials, leading to subdiffraction resolution with optical imaging. Fabricating a smooth silver superlens (0.6nm root mean square roughness) with 15nm thickness, I demonstrate 30nm imaging resolution or 1/12 th of the illumination wavelength (near-ultraviolet), far below the diffraction-limit. Moreover, I have extended subdiffraction imaging to far-field at infrared wavelengths. Utilizing a two-dimensional iii array of silver nanorods that provides near-field enhancement, I numerically show that subwavelength features can be resolved in far-field in the form of Moiré features. Development of this unique far-field superlensing phenomenon at infrared wavelengths is of significant importance to chemical and biomedical imaging. iv In memory of Dada and Jee v ACKNOWLEDGEMENTS I have been fortunate to be surrounded by many loving people and it is my great pleasure to thank them for their love, support, blessings and encouragement. First of all, I would like to express my sincere gratitude towards my advisor Prof. Nicholas …
منابع مشابه
Metamaterials: a new frontier of science and technology.
Metamaterials, artificial composite structures with exotic material properties, have emerged as a new frontier of science involving physics, material science, engineering and chemistry. This critical review focuses on the fundamentals, recent progresses and future directions in the research of electromagnetic metamaterials. An introduction to metamaterials followed by a detailed elaboration on ...
متن کاملPure nonlinear optical activity in metamaterials
We demonstrate a type of meta-atom for creating metamaterials with giant nonlinear optical activity but vanishing linear optical activity in a wide frequency range. Such properties are not found in any natural materials, and we call this regime as pure nonlinear optical activity. We further extend our design concept and show that the metamaterial can be tuned dynamically to exhibit either posit...
متن کاملReconfigurable nanomechanical photonic metamaterials.
The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules...
متن کاملOptical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملLow-threshold optical bistabilities in ultrathin nonlinear metamaterials.
Optical bistability typically occurs only when the optical thickness in the device or the input light power is unfavorably large. Here we show that, for a class of plasmonic metamaterials consisting of ultrathin holey metallic plates filled with nonlinear materials, the optical bistability can occur with an ultralow excitation power. We present a realistic design working at 0.2 THz and perform ...
متن کاملChiral metamaterials: enhancement and control of optical activity and circular dichroism
The control of the optical activity and ellipticity of a medium has drawn considerable attention due to the recent developments in metamaterial design techniques and a deeper understanding of the light matter interaction in composite metallic structures. Indeed, recently proposed designs of metaatoms have enabled the realisation of materials with unprecedented chiral optical properties e.g. str...
متن کامل